Civil Infrastructure Testing and Evaluation Laboratory (CITEL)

CITEL is a 45,000-square-foot facility that utilizes advanced testing and computational systems to examine numerous issues related to the performance of the world's civil infrastructure.

The laboratory enables evaluation of a broad range of standard and state-of-the-art concrete materials testing; measurement and characterization of pavement surfaces; in situ instrumentation; the effects of tire types and pressure on pavement performance; testing of concrete, masonry, composite structures, and subassemblies; AASHTO and ASTM cement, grout, mortar, and concrete testing; reinforcement bars and external repair/rehabilitation materials, static/dynamic/repeated loading, environmental effects, and life-cycle costs.

CITEL is directed by:
Ming Xiao, Ph.D., P.E.
Associate Professor of Civil Engineering

For more information:
Amy Bordas
Administrative Assistant, CITEL
Phone: 814-865-7630 / Email: ajm114@psu.edu
3127 Research Drive, Office 107
State College, PA 16801

cee.psu.edu/research/citel.aspx

Laboratory features include:

- Concrete mixing and curing area
- Chemistry lab for sample preparation and testing of cements, pozzolans, and geopolymers
- Concrete mechanical and durability testing (freeze-thaw, shrinkage, corrosion, ASR)
- 9 environmental chambers, ASTM and AASHTO restrained rings
- An optical and petrographic microscopy facility
- Mechanical testing capabilities, which include a test bed with a 2,500-square-foot structural floor for large-scale steel or concrete members
 - 12-ton crane
 - 3 test frames
 - Servo-controlled hydraulic actuator with capacities ranging from 11 KIP to 210 KIP
- A broad suite of standardized concrete durability testing
- Testing capabilities for concrete, steel, soil, aggregate, and asphalt
- 3D printing capabilities
- Non-destructive evaluation and monitoring
 - Field in-situ evaluation
 - Ultrasonic testing
 - Impact resonance testing
 - Non-contact measurements
- Third-Scale Model Mobile Load Simulator (MMLS3), for accelerated traffic loading of payment surfaces
- Seismic soil testing utilizing
 - Shake table and laminar shear box
 - Large-scale direct shear evaluation
Large-scale dynamic direct shear machine

3D printing of concrete

Shake table with laminar shear box

Third-Scale Model Mobile Load Simulator (MMLS3)

Hydraulic flume

MTS 110 kip actuators